Postdoctoral Scholar Position

The Ecosystem & Soil Microbial Processes Lab led by Dr. Pete Homyak in the Department of Environmental Sciences at UC-Riverside is accepting applications for a Postdoctoral Scholar position to work on USDA/DOE funded projects. Competitive candidates will have a Ph.D. degree in biogeochemistry, soil science, soil microbiology, environmental science, ecology, or a closely related discipline. Some desired qualifications include: expertise in soil N and C cycling, experience measuring soil trace gas emissions (NO, N₂O, CO₂, CH₄) both in the lab and field, experience using isotope labels and working with isotopes in general, fieldwork experience, demonstrated ability publishing in peer-reviewed scientific literature, and familiarity with enzyme assays, and soil C and N assays including density fractionation and carbon-use efficiency.

We study how soil microbial and abiotic processes control the exchange of elements such as N, P, and C across the soil–water–atmosphere interfaces to infer how anthropogenic disturbances and changes in global climate may alter ecosystem biogeochemistry and function. The researcher will work on projects evaluating how post-fire environments alter soil C and N cycling and trace gas emissions. We use several novel tools including δ¹³C-CO₂/CH₄ and N₂O isotopologue trace gas analyzers, LI-COR automated soil flux chambers, and instruments in the isotope facility FIRMS (https://ccb.ucr.edu/facilities/firms) and the ESRL (https://envisci.ucr.edu/research/environmental-sciences-research-laboratory-esrl).

Job responsibilities include:

- Lead the research team composed of graduate and undergraduate students, technicians, postdocs, and other faculty.
- Lead research projects furthering understanding of soil C and N cycling in post-fire environments using isotopic tools available in the lab and FIRMS. Lead the writing of manuscripts and publish in peer-reviewed scientific journals.
- Assist with research activities in the lab and field.
- Learn/use laboratory instrumentation and field tools and assist with team training and sample processing and analysis.
- Actively participate in research activities including seminars, workshops, and lab meetings.

How to apply: Initial review of candidates will begin October 1, 2022, with a start date no later than January 3, 2022. Salary and benefits are competitive and based on experience. The position will be offered as an annual contract with an expectation the position will be renewed for two years. All UC employees receive comprehensive benefits including medical, dental, vision, and retirement plans. https://ucnet.universityofcalifornia.edu/compensation-and-benefits/. **Candidates should apply directly to Dr. Pete Homyak (phomyak@ucr.edu) by submitting a single PDF file containing: Curriculum vitae (CV), contact information of three references, and a cover letter indicating i) your research interests, ii) how you meet the minimum or desired qualifications, and iii) why our lab is a good fit. The subject of the email should be “2022 Postdoc Position”**.

For more information please visit https://envisci.ucr.edu/faculty/homyak.html

The University of California is an Equal Opportunity / Affirmative Action Employer with a strong institutional commitment to the achievement of excellence and diversity among its faculty and staff. All qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, age, disability, protected veteran status, or any other characteristic protected by law. UCR is a world-class research university with an exceptionally diverse undergraduate student body. Its mission is explicitly linked to providing routes to educational success for underrepresented and first-generation college students.

UCR is located within one hour of downtown Los Angeles, a city that provides world-class cultural opportunities. Riverside also provides access to numerous outdoor recreational areas, including forest, alpine, ocean, and desert environments.